
Package: ggarchery (via r-universe)
October 23, 2024

Type Package

Depends R (>= 4.0.0)

Imports ggplot2, purrr, magrittr, tidyr, dplyr, glue, rlang, grid

Title Flexible Segment Geoms with Arrows for 'ggplot2'

Version 0.4.3

Description Geoms for placing arrowheads at multiple points along a
segment, not just at the end; position function to shift starts
and ends of arrows to avoid exactly intersecting points.

License GPL-3

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

URL https://github.com/mdhall272/ggarchery

Collate 'legend-draw-ggarchery.R' 'geom-arrowsegment.R' 'ggproto.R'
'position-attractsegment.R'

Repository https://mdhall272.r-universe.dev

RemoteUrl https://github.com/mdhall272/ggarchery

RemoteRef HEAD

RemoteSha b565d2a4d58c749082183b4001f51b20f2f480a1

Contents
draw_key_arrowpath . 2
geom_arrowsegment . 3
position_attractsegment . 6

Index 8

1

https://github.com/mdhall272/ggarchery

2 draw_key_arrowpath

draw_key_arrowpath This function replaces ggplot2::draw_key_path and displays all the
requested arrowheads.

Description

This function replaces ggplot2::draw_key_path and displays all the requested arrowheads.

Usage

draw_key_arrowpath(data, params, size)

Arguments

data A single row data frame containing the scaled aesthetics to display in this key

params A list of additional parameters supplied to the geom.

size Width and height of key in mm.

Value

A grid grob.

Examples

library(ggplot2)
library(magrittr)
library(tidyr)

Generate some dummy data

ten.points <- data.frame(line.no = rep(1:5, each = 2), x = runif(10), y = runif(10),
position = rep(c("start", "end"), 5))

five.segments <- ten.points %>% pivot_wider(names_from = position, values_from = c(x,y))

ggplot(five.segments) +
geom_point(data = ten.points, aes(x = x, y = y)) +
geom_segment(aes(x = x_start, xend = x_end, y = y_start, yend = y_end), arrow = arrow(),

key_glyph = draw_key_arrowpath)

geom_arrowsegment 3

geom_arrowsegment Line segments with flexible arrows

Description

The basic geom_arrowsegment() is equivalent to geom_segment(arrow = arrow()). (It is as-
sumed that the user wants some kind of arrow.) The extended functionality is to allow free place-
ment of the arrowhead anywhere along the segment, and also multiple arrowheads, and to allow a
fill aesthetic (which will only be visible for closed arrowheads).

The function works by dividing the line up into 1 or more segment grobs, each of which is generated
by grid::arrow() except potentially the last (the one closest to the point (xend, yend)). The vector
arrow_positions, whose entries must lie between 0 and 1, defines where each arrow segment ends,
as a proportional position along the line. If the last entry of arrow_positions is 1, then the last
grob has an arrow; otherwise it does not.

The function is designed with the expectation that arrows point from (x, y) to (xend, yend) but the
arrows argument will happily accept arrow(ends = "first") or arrow(ends = "both") if you
prefer. Just remember that the final segment is only an arrow at all if the last entry of arrow_positions
is 1.

Usage

geom_arrowsegment(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
arrows = list(arrow()),
arrow_fills = NULL,
arrow_positions = 1,
lineend = "butt",
linejoin = "round",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

4 geom_arrowsegment

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count" rather than "stat_count")

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

arrows Either an arrow generated by grid::arrow() of a list of such arrows. In the
former case or if the list has length 1, the arrowhead so defined is used every
time; otherwise the list is expected to have the same length as arrow_positions
and each segment defined by that argument is ended by the respective element
of this one. The default is grid::arrow() with default parameters.

arrow_fills A vector of fill colours for the arrowheads, behaves as the arrow_fill option in
geom_segment. This will overrule a fill aesthetic in the same way that specifying
a single fill outside aes specification will.

arrow_positions

A vector of distinct points on the unit interval. 0 is not permitted but arbitrarily
small values are; 1 is permitted. The default behaviour is that arrowheads will
be placed proportionally along the line connecting (x, y) to (xend,yend) at these
points. In more detail: The first arrow segment begins at (x, y) and ends a
proportional distance along the straight line joining (x, y) and (xend, yend) equal
to the first entry of this vector. The second bridges the first two entries, and so
on. If the final entry is 1 then the last segment is an arrow (and hence usually
an arrowhead will be placed at the end of the line). If it is not, then the last
segment is simply a line. These will be sorted into order from 0 to 1 if they are
not already.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom_arrowsegment 5

Value

A ggproto object

Examples

library(ggplot2)
library(magrittr)
library(tidyr)

Generate some dummy data

ten.points <- data.frame(line.no = rep(1:5, each = 2), x = runif(10), y = runif(10),
position = rep(c("start", "end"), 5))

five.segments <- ten.points %>% pivot_wider(names_from = position, values_from = c(x,y))

Default behaviour

ggplot(five.segments) +
geom_point(data = ten.points, aes(x = x, y = y)) +
geom_arrowsegment(aes(x = x_start, xend = x_end, y = y_start, yend = y_end))

Midpoint arrowheads

ggplot(five.segments) +
geom_point(data = ten.points, aes(x = x, y = y)) +
geom_arrowsegment(aes(x = x_start, xend = x_end, y = y_start, yend = y_end),

arrow_positions = 0.5)

Double arrows

ggplot(five.segments) +
geom_point(data = ten.points, aes(x = x, y = y)) +
geom_arrowsegment(aes(x = x_start, xend = x_end, y = y_start, yend = y_end),

arrow_positions = c(0.25, 0.75))

Double arrows, last arrowhead at the end point

ggplot(five.segments) +
geom_point(data = ten.points, aes(x = x, y = y)) +
geom_arrowsegment(aes(x = x_start, xend = x_end, y = y_start, yend = y_end),

arrow_positions = c(0.25, 1))

Double arrowheads of varying appearance and position

ggplot(five.segments) +
geom_point(data = ten.points, aes(x = x, y = y)) +
geom_arrowsegment(aes(x = x_start, xend = x_end, y = y_start, yend = y_end),

arrow_positions = c(0.25, 0.75),
arrows = list(arrow(angle = 45, type = "closed"),

arrow(angle = 25, ends = "both")),
arrow_fills = "indianred")

6 position_attractsegment

position_attractsegment

Nudge points towards each other along a line

Description

This position function is primarily intended for use with ggplot2::geom_segment() or geom_arrowsegment(),
and solves the problem that the user may, for reasons of clarity or aesthetics, not want their arrows
to actually start or end at the position that they are "pointing from" or "pointing to". It works by
shifting the points towards each other along the line joining them, by either a proportional amount
or a fixed distance.

Usage

position_attractsegment(
start_shave = 0,
end_shave = 0,
type_shave = c("proportion", "distance")

)

Arguments

start_shave, end_shave
The amount of distance to "shave" off the line between (x, y) and (xend, yend),
at, respectively, the start and the end. Can be zero; cannot be negative. Units are
determined by type_shave.

type_shave If "proportion" (the default) then this is a proportion of the total line length.
If "distance" then it is instead the raw distance along the line. The is only really
recommended in combination with ggplot2::coord_fixed(); results can be
quite odd otherwise.

Value

A ggproto object

Examples

library(ggplot2)
library(magrittr)
library(tidyr)

Generate some dummy data

ten.points <- data.frame(line.no = rep(1:5, each = 2), x = runif(10), y = runif(10),
position = rep(c("start", "end"), 5))

five.segments <- ten.points %>% pivot_wider(names_from = position, values_from = c(x,y))

Ten percent off the start and end

position_attractsegment 7

ggplot(five.segments) +
geom_point(data = ten.points, aes(x = x, y = y)) +
geom_arrowsegment(aes(x = x_start, xend = x_end, y = y_start, yend = y_end),

position = position_attractsegment(start_shave = 0.1, end_shave = 0.1))

Absolute distance of 0.02 at the end only

ggplot(five.segments) +
geom_point(data = ten.points, aes(x = x, y = y)) +
geom_arrowsegment(aes(x = x_start, xend = x_end, y = y_start, yend = y_end),

position = position_attractsegment(end_shave = 0.02,
type_shave = "distance")) +

coord_fixed()

Index

∗ position adjustments
position_attractsegment, 6

aes(), 3

borders(), 4

draw_key_arrowpath, 2

fortify(), 4

geom_arrowsegment, 3
geom_arrowsegment(), 6
geom_segment, 4
ggplot(), 3
ggplot2::coord_fixed(), 6
ggplot2::draw_key_path, 2
ggplot2::geom_segment(), 6
grid::arrow(), 3, 4

layer(), 4

position_attractsegment, 6

8

	draw_key_arrowpath
	geom_arrowsegment
	position_attractsegment
	Index

